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One-Dimensional Non-Nearest-Neighbor Random 
Walks in the Presence of Traps 

Robert J. Rubin ~ 

A one-dimensional lattice random walk in the presence of m equally spaced 
traps is considered. The step length distribution is a symmetric exponential. An 
explicit analytic expression is obtained for the probability that the random walk 
will be trapped at the jth trapping site. 
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1. I N T R O D U C T I O N  

In this note we calculate the probability that a random walker whose step 
distribution function is exponential will be trapped at one of a set of 
regularly spaced trapping sites. In our analysis we utilize a result of Rubin 
and Weiss (1) (RW). RW obtained a general expression for the generating 
function for the probability of random walks which start at the origin in a 
d-dimensional lattice and reach lattice point R at step N having visited 
each of a set of m lattice points {Ri}, where Ri is visited si times and where 
s i ~> 0. The RW generating function is expressed in terms of the generating 
function for the probability of random walks which start at Ri and reach 
Rj at step N, P [ R j - R ~ ;  z]. The explicit form of P [ R j - R i ;  z] for the one- 
dimensional lattice with exponentially distributed step length has been 
obtained by Lakatos-Lindenberg and Shuler (2) (LS). 

In Section 2 we define the one-dimensional random walk model with 
trapping sites, present the explicit results from RW (1) and LS ~2) which we 
use in our analysis, and outline the results of our calculation. Details of the 
calculation are given in the Appendix. 
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2. O N E - D I M E N S I O N A L  LATTICE WITH TRAPS 

We consider a one-dimensional random walk on a lattice with m 
equally spaced trapping sites located at lattice points b, 2b,..., mb, where b 
is a positive integer. RW (1) have given an expression for ~(jb; Xl,...,xm; z), 
the generating function of the probability of random walks which start at 
the origin and reach lattice point R s = jb at step N, having visited lattice 
Ri= ib, s~ times, where s~>~0 and i =  1 ..... m. When we use this result in our 
trapping problem, we will require that all si are equal to zero. In this way, 
we assure that all trapping sites have been avoided until trapping site R s is 
reached for the first time. 

The RW generating function is expressed as the ratio of two m x m 
determinants [Eq. (17b) in ref. 1] 

~(jb; x 1 ,...,x m ; z)  = xjD(J)(Xl  ,...,Xm; z ) /D(x l , . . . ,  Xm ; z)  ( t )  

where 

D(xl ,...,Xm; Z) 

Xl + (1 --Xl) P [0 ;z ]  
= (1 -x l ) :P[b;z  ] 

[(1--Xl) e [ i m -  1)b; z] 

( l - x 2 )  P [ - b ; z  ] ... (1-xm)  P [ - ( m - 1 ) b ; z  ] 
x 2 + ( 1 - x 2 )  P[O;z ] ... (1-Xm) P [ - ( m - 2 ) b ; z  ] 

(1-x2)  P[ (m-2)b; z  ] -.- xm+(1-x , , )P[O;z]  

(2) 

and where the m x m  determinant DIJ)(xl ..... Xm;Z) is obtained from 
O(xl , . . . ,Xm; z)  by replacing its j t h  column by the column 

P[b; z] \ 

P [ m b ; z ] /  

(3) 

The function P[R  s -  Ri; z] is the generating function of the probability of 
random walks which start at Ri and reach R s at step N. In this note we 
only consider symmetric random walks with an exponential step distribu- 
tion. For  the case of random walks with the normalized step distribution 

~�89 l,r 6 
P ( 6 -  l,) = (0 ,  t, = b (4) 
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LS (2) obtained an explicit formula for P [ R j - R ~ ;  z] [see Eq. (74) in ref. 2]: 

(XIR:- R,Iz(e2,_ l ) 
~ E 2 + z ( z ' -  1 ) ] ~ '  I R j - - R I ] ~ I  

r [ R j - i i ; z ]  = ~ Z(C 2a -  1 ) + 2 9  (5) 

where 

9 =  {(e~+ 1)[-ea + 1 +z(e ~ -  1)](l - z ) }  ~/2 (6) 

and 

e2a + 1 + z(e a -  1 ) -  (e a -  1 )9  
X -  (7) 

ea[2+z(e  ~ -  1)] 

The symmetric nature of the random walk is evident in the dependence of 
P [ R j - R i ; z ]  on [Rj -R ,]  in Eq. (5). 

Finally, the generating function of the probability of random walks 
which start at R = 0 and reach R =jb,  having visited lattice point R~ = ib, 
si times, where i =  1,..., is H[jb; sl,...,sm; z], the coefficient of x is x2S2 . . XmSm 
in the expansion of ~(jb; xl,...,xm; z) in a multiple power series 

~ ( j b ; X l , ' " , x m ; z ) = x J  2 "'" Z H(jb;s1 ..... Srn;Z)X~ l'''xsmm 
Sl = 0  srn~O 

(8) 

We have now assembled all the explicit formulas which we require in 
our trapping problem. If we wish to calculate the probability that a 
random walker starting at the origin will be trapped at lattice site Rj = jb, 
one of the trapping sites {ib}, i= 1 ..... m, we can simply calculate it from 
the conditioned first-passage probability-generating function [Eqs. (1) and 
(8)] 

H(jb; 0,..., 0; z) = D(J)(0,..., 0; z)/D(O,..., 0;z) (9) 

The coefficient of z N in the expansion of H(jb; 0 ..... 0; z) in powers of z, 
F(jb; 0,..., 0; N), is the probability of first passage to lattice site jb at step 
N conditioned on the walker never having visited any of the other trapping 
sites prior to step N (i.e., si = 0 for all i) 

HUb;  O ..... O;z)= ~ F(jb;  O ..... O;N)z ~ 
N = O  

(lo) 
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The probability H (j) that the random walker will be trapped eventually at 
Rj=jb  is, according to Eqs. (9) and (11), 

H (j) = H(jb; 0 ..... 0; 1) 

= ~ F(jb;O ..... 0; N) 
N = 0  

= lim {D~ 0; z)/D(O ..... 0; z)} (11) 
z ~ l  

The determinant D(0,..., 0; z) which appears in Eqs. (9) and ( l l )  has 
a simpler form than that in Eq. (2), namely 

D(0,..., 0; z) = 

P[0;  z] P[b; z] 

P[b; z] P[0;  z] 

P [ ( m - 1 ) b ; z ]  P [ ( m - 2 ) b ; z ]  

P [ ( m -  1)b;z] 

P[(m - 2 ) b ; z ]  

P[0;  z] 

(12) 

The determinant D(0,..., 0; z) is symmetric for symmetric random walks 
because P [ R j - R i ;  z] is an even function of its first argument�9 All elements 
of the determinants D(0,..., 0; z) and D(J)(0,..., 0; z) are singular, containing 
a factor ( 1 - z )  -1/2, so care must be taken in evaluating the limit z--, 1 in 
Eq. (11). The details of this calculation are given in the Appendix; we 
merely list the results here. The probalbility H (s) in Eq. (11) that the ran- 
dom walker will be trapped eventually at R =jb is [Appendix, Eq. (A30)] 

U(J)= [ s i n h ( m - j +  1 ) F - s i n h ( m - j ) F ] / s i n h m F  (13) 

where 
sinh(F/2) = b 1/2 sinh(a/2) (14) 

It follows from the form of H (j) in Eq. (13) that H, the probability that the 
random walker will be trapped eventually at one of the m trapping sites, 
is a certainty, i.e., 

H =  ~ H~;) = 1 (15) 
j - - 1  

We next consider the form of H (j) in two limiting cases: (a) first the 
limit in which the average step length is large compared to the spacing 
between traps; and (b) the opposite limit of a small average step length. 
The average magnitude of the step length of the exponential step distribu- 
tion, Eq. (4), is 

( l )  = ( 1 - - e - a )  ~ (16) 
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The limit ( l )  ~> b corresponds to a ~ 1, in which case 

(l)~_a 1 (17) 

and from Eq. (14) 

F_~ bl/2a (18) 

Thus in case (a), Eq. (13) for H ~j~ yields 

lim {H ~j) } = m -1 (19) 
a ~ 0  

the same value for all trapping sites. 
LS ~2) have note that in the opposite limit [our case (b)], where 

a ~  o% the exponential-step-distribution random walk, Eq. (4), behaves 
like a nearest-neighbor random walk. According to Eq. (14), in the limit of 
large a, 

F/a -- 1, a ~ oo (20) 

In the limit where F~> l, it is convenient to rewrite Eq. (13) as 

H(J)=e ~J ~ ) r ( l _ e - r _ e  2~ml__e --y";Fj+l)r+e-E2~m-j)+~r ) (21) 

Thus, for F ~> l, 

H(1)~ 1 --e - r  
H(m)~e Im I)F 

and 

lim {H (j)} = {1, j =  1 
r~oo 0, j > l  

Thus in the limiting case (b), it is seen that the probability of trapping at 
site j = 1, closest to the starting point, is a certainty, the result expected for 
a nearest-neighbor one-dimensional random walk. 

Finally, we make two remarks suggesting interesting generalizations of 
the model treated in this paper. First, it is possible to repeat the calculation 
of trapping probabilities for a biased exponential step distribution since 
LS ~2) have obtained the generating function in this case. Second, it would 
be of interest to consider the trapping problem for Weierstrass random 
walks. 
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A P P E N D I X .  E V A L U A T I O N  OF  l imz._, l{D(J)(0 ... . .  O ; z ) / D ( O  . . . . .  0 ; z ) }  

Each of the elements in the determinants D(0 ..... 0;z) and 
D(J)(0,..., 0; z), Eqs. (2), (3), and (12), is expressed in terms of the 
generating function for the exponential-step random walk, Eq. (5). In this 
calculation it is convenient to isolate the singular part of the generating 
function which is located at z = 1: 

~'ag(1 --z) 1/2xb[j-il, [j--i[ >/ 1 (A1) 
P [ R j - R * ; z ] = ( ~ [ l + g ( l _ z  ) 1/2], j = i  

where 

and 

a = 2 [ 2 + z ( e  a -  1)] - I  

g = z(e 2a - 1 )/(2h) 

h-- {(e " -  1)[-e"+ 1 +z(e ~ -  1)]} 1/2 

(A2) 

(A3) 

(A4) 

e2a+ 1 q-z(e a -  1 ) -  (e a -  1 ) (1-z ) - l /2h  
X =  (as)  

e " [2+z (e  a -  1)] 

The diagonal and off-diagonal elements of P[R i -  Ri; z] in Eq. (A1) can be 
represented by the single expression 

P [ R ; - R , ;  z] = ~[-(~0 + g(1 - z ) l / z x  blj ,I] (A6) 

where 5~j is the Kronecker delta: 

6..= ~0, i # j  
,s [1, i = j  

Each element of the m x m determinant D(0 ..... 0; z) contains a factor ~. 
Therefore D(0,..., 0; z) can be written as 

D(0 ..... 0, z) = otmdm (a7) 

where the i, j element of the m x m determinant dm is 

(~ij'~- g(1 --z) 1/2xbtj-i[ (A8) 

We next show that the determinant D(s)(O ..... 0; z) can be expressed as 
a simple combination of a pair of determants dm_s+l and dm j. Each 
element of D(s)(O,..., 0; z) is proportional to ~, so 

DO)(O ..... O; z) " (j) = a d m (A9) 
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where d~ ) is the m x m determinant which is obtained from din, Eqs. (A7) 
and (A8), by replacing its j t h  column by 

g ( 1 - z )  1/zjfb 

g (1-z ! - l /2X.  2b 

g(1 - z )  - 1/2X~b 

(A10) 

First note that when a factor X b is removed from column j, its elements are 
identical with those of column 1 [see Eq. (A8)], except for the first element 
of column 1, which contains a contribution from 611. Thus, by subtracting 
column j from column 1 and expanding by elements of the first column, 
one obtains 

( j ) _ _ v b q ( j  1) (Al l )  d m  - ~x ~ m  1 

This procedure can be repeated until 

dm(J) - -  X ( J -  l)bd(1)-'m - j  + 1 (A12) 

Next note that after removing one additional factor X b from the first 
column of d m(l)_j+ 1 the 1, 1 element of Eq. (AI2) can be written as 

l + g ( 1 - z )  1 / 2 X b - 1  

It therefore follows that 

d( ' )  = X b [ d m _ j + l - d , . _ j ]  m - - j +  1 

Finally, we have 

D(J)(0,..., 0; z) = ~'~XJb[dm j+ l - d,~_j] 

(A13) 

(A14) 

The conditioned first-passage probability generating function, Eq. (9), 
is reduced with the aid of Eqs. (A7) and (Al4) to 

/ / ( jb;  0,..., 0; z) = XJb(dm_j+ ,  - dm_j)/d,~ ( M s )  

We next obtain an explicit expression for the determinant din. Consider the 
following pair of operations: (1) multiply the rth row by X b and subtract 
it from the r +  l th row; (2) then repeat this operation for the rth and 
( r +  1)th columns. If this pair of operations is performed in the order 
r = m -  1, m -  2 ..... 1, the determinant dm assumes the tridiagonal form 
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dm = 

where 

It follows from 
equation, 

where 

and 

l + g ( 1 - z )  1/2 _ X b  

- X  b Q - X  b 

- X  b s 

- X  b 

- X  b f2 

(A16) 

( 2 = l + g ( 1 - - z )  l / 2 + [ l _ g ( l _ z )  l/2]X2b (A17) 

Eq. (A16) that dm satisfies the recurrence, or difference 

d,, = ~'-2d m 1 - X2bd,~- 2 (A18) 

do= 1 

dl = 1+  g ( 1 - z )  -1/2 

The recurrence equation can be solved by the method of generating 
functions. Multiply Eq. (A17) by t m and sum from m = 2 to oo and obtain 

G ( t ) -  1 - t[1 - g(1 - z )  -1/2] = ( 2 t [ G ( t ) -  1] --xZbtZG(t)  (A19) 

where 

oo 
G( t )=  L dm tm (A20) 

m = 0  

Solving Eq. (A19) for G(t), 

1 + t[-1 + g ( 1  - z) - 1 / 2 -  g2] 
G(t)  = 1 - 2 ( �89  + (Xbt)  2 (a21) 

The denominator of Eq. (A21) has been cast in the form of the generating 
function for Tchebychef polynomials, (3) so that 

G ( t ) = { l + t [ l + g ( 1 - z ) - l / z - Q ] }  ~ Um(COsO)(xbt) 2 (A22) 
m = O  
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where 

and 

cos 0 = I b 5f2X 

=~(X1 b q _ x - b ) _ � 8 9  I / 2 ( x b - x  b) 

Urn(COS 0) = sin(m + 1)0/sin mO 

(A23) 

Combining Eqs. (A20) and (A22) and the definition of s Eq. (A17), we 
find that the explicit formula for d m is the coefficient of tin: 

dm---xmb{Um(COsO)+[g(l -z) - l /2-1]XbUm_~(cosO)}  (A25) 

We are now prepared to consider the limit z ~ 1 in Eq. (A15) using 
Eq. (A25). First note that cos 0, which appears in Eq. (A25) and is defined 
in Eq. (A23), approaches a well-defined limit as z ~ 1, namely 

lim {cos 0} = 1 + 2b sinh2(a/2) (A26) 
z ~ l  

Since the limiting value of cos 0 in Eq. (A26) is greater than one, the 
limiting value of 0 is iF, where F is real and 

cosh F =  1 + 2b sinh2(a/2) (A27) 

As a consequence of th is fac t ,  a Tchebychef polynomial such as Um(cos 0) 
approaches the limit 

lim { Urn(COS 0) } = s i n h ( m  + 1 )F / s inh  F 
z ~ l  

(A28) 

In obtaining the limit for cos 0 in Eq. (A26), we have used the fact that X 
also approaches a limit, 

lim { X }  = 1 ( A 2 9 )  
z ~ l  

We thus conclude that the only singular component of d m in the limit z ~ 1 
is the factor ( l - z )  -~/2. Thus, the z--*l limit of II(jb; O,..., O; z) in 
Eq. (A15) is 

H ~  lim {H(jb; 0,..., 0; z)} 
z ~ l  

= [Um_j(cosh F)--  Um_j_~(cosh JF)]/U m l(cosh F) 

= [sinh (m - j + 1 ) F -  sinh(m - j)  F]/sinh mF (A30) 

(A24) 
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It follows from the form of Eq. (A30) that the probability that the 
random walker will be trapped at one of the trapping sites is 

m 

/ /(J)  = 1 (A31 ) 
j = l  
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