One-Dimensional Non-Nearest-Neighbor Random Walks in the Presence of Traps

Robert J. Rubin ${ }^{\text {1 }}$

Abstract

A one-dimensional lattice random walk in the presence of m equally spaced traps is considered. The step length distribution is a symmetric exponential. An explicit analytic expression is obtained for the probability that the random walk will be trapped at the j th trapping site.

KEY WORDS: One-dimensional random walk; non-nearest-neighbor step distribution; traps, conditioned first passage time; generating functions.

1. INTRODUCTION

In this note we calculate the probability that a random walker whose step distribution function is exponential will be trapped at one of a set of regularly spaced trapping sites. In our analysis we utilize a result of Rubin and Weiss ${ }^{(1)}$ (RW). RW obtained a general expression for the generating function for the probability of random walks which start at the origin in a d-dimensional lattice and reach lattice point \mathbf{R} at step N having visited each of a set of m lattice points $\left\{\mathbf{R}_{i}\right\}$, where \mathbf{R}_{i} is visited s_{i} times and where $s_{i} \geqslant 0$. The RW generating function is expressed in terms of the generating function for the probability of random walks which start at \mathbf{R}_{i} and reach \mathbf{R}_{j} at step $N, P\left[\mathbf{R}_{j}-\mathbf{R}_{i} ; z\right]$. The explicit form of $P\left[\mathbf{R}_{j}-\mathbf{R}_{i} ; z\right]$ for the onedimensional lattice with exponentially distributed step length has been obtained by Lakatos-Lindenberg and Shuler ${ }^{(2)}$ (LS).

In Section 2 we define the one-dimensional random walk model with trapping sites, present the explicit results from $\mathrm{RW}^{(1)}$ and $\mathrm{LS}^{(2)}$ which we use in our analysis, and outline the results of our calculation. Details of the calculation are given in the Appendix.

[^0]
2. ONE-DIMENSIONAL LATTICE WITH TRAPS

We consider a one-dimensional random walk on a lattice with m equally spaced trapping sites located at lattice points $b, 2 b, \ldots, m b$, where b is a positive integer. $\mathrm{RW}^{(1)}$ have given an expression for $\xi\left(j b ; x_{1}, \ldots, x_{m} ; z\right)$, the generating function of the probability of random walks which start at the origin and reach lattice point $R_{j}=j b$ at step N, having visited lattice $R_{i}=i b, s_{i}$ times, where $s_{i} \geqslant 0$ and $i=1, \ldots, m$. When we use this result in our trapping problem, we will require that all s_{i} are equal to zero. In this way, we assure that all trapping sites have been avoided until trapping site R_{j} is reached for the first time.

The RW generating function is expressed as the ratio of two $m \times m$ determinants [Eq. (17b) in ref. 1]

$$
\begin{equation*}
\xi\left(j b ; x_{1}, \ldots, x_{m} ; z\right)=x_{j} D^{(j)}\left(x_{1}, \ldots, x_{m} ; z\right) / D\left(x_{1}, \ldots, x_{m} ; z\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& D\left(x_{1}, \ldots, x_{m} ; z\right) \\
& \quad=\left|\begin{array}{cccc}
x_{1}+\left(1-x_{1}\right) P[0 ; z] & \left(1-x_{2}\right) P[-b ; z] & \cdots & \left(1-x_{m}\right) P[-(m-1) b ; z] \\
\left(1-x_{1}\right) P[b ; z] & x_{2}+\left(1-x_{2}\right) P[0 ; z] & \cdots & \left(1-x_{m}\right) P[-(m-2) b ; z] \\
\vdots & \vdots & & \vdots \\
\left(1-x_{1}\right) P[(m-1) b ; z] & \left(1-x_{2}\right) P[(m-2) b ; z] & \cdots & x_{m}+\left(1-x_{m}\right) P[0 ; z]
\end{array}\right| \tag{2}
\end{align*}
$$

and where the $m \times m$ determinant $D^{(j)}\left(x_{1}, \ldots, x_{m} ; z\right)$ is obtained from $D\left(x_{1}, \ldots, x_{m} ; z\right)$ by replacing its j th column by the column

$$
\left(\begin{array}{c}
P[b ; z] \tag{3}\\
P[2 b ; z] \\
\vdots \\
P[m b ; z]
\end{array}\right)
$$

The function $P\left[R_{j}-R_{i} ; z\right]$ is the generating function of the probability of random walks which start at R_{i} and reach R_{j} at step N. In this note we only consider symmetric random walks with an exponential step distribution. For the case of random walks with the normalized step distribution

$$
p\left(l_{j}-l_{i}\right)= \begin{cases}\frac{1}{2}\left(e^{a}-1\right) \exp \left[-\left|l_{i}-l_{j}\right| a\right], & l_{i} \neq l_{j} \tag{4}\\ 0, & l_{i}=l_{j}\end{cases}
$$

$\mathrm{LS}^{(2)}$ obtained an explicit formula for $P\left[R_{j}-R_{i} ; z\right]$ [see Eq. (74) in ref. 2]:

$$
P\left[R_{j}-R_{i} ; z\right]= \begin{cases}\frac{X^{\left|R_{j}-R_{i}\right|} z\left(e^{2 a}-1\right)}{\left[2+z\left(z^{a}-1\right)\right] \mathscr{D}}, & \left|R_{j}-R_{i}\right| \geqslant 1 \tag{5}\\ \frac{z\left(e^{2 a}-1\right)+2 \mathscr{D}}{\left[2+z\left(e^{a}-1\right)\right] \mathscr{D}}, & R_{j}=R_{i}\end{cases}
$$

where

$$
\begin{equation*}
\mathscr{D}=\left\{\left(e^{a}+1\right)\left[e^{a}+1+z\left(e^{a}-1\right)\right](1-z)\right\}^{1 / 2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
X=\frac{e^{2 a}+1+z\left(e^{a}-1\right)-\left(e^{a}-1\right) \mathscr{D}}{e^{a}\left[2+z\left(e^{a}-1\right)\right]} \tag{7}
\end{equation*}
$$

The symmetric nature of the random walk is evident in the dependence of $P\left[R_{j}-R_{i} ; z\right]$ on $\left|R_{j}-R_{i}\right|$ in Eq. (5).

Finally, the generating function of the probability of random walks which start at $R=0$ and reach $R=j b$, having visited lattice point $R_{i}=i b$, s_{i} times, where $i=1, \ldots$, is $\Pi\left[j b ; s_{1}, \ldots, s_{m} ; z\right]$, the coefficient of $x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{m}^{s_{m}}$ in the expansion of $\xi\left(j b ; x_{1}, \ldots, x_{m} ; z\right)$ in a multiple power series

$$
\begin{equation*}
\xi\left(j b ; x_{1}, \ldots, x_{m} ; z\right)=x_{j} \sum_{s_{1}=0} \cdots \sum_{s_{m}=0} \Pi\left(j b ; s_{1}, \ldots, s_{m} ; z\right) x_{1}^{s_{1}} \cdots x_{m}^{s_{m}} \tag{8}
\end{equation*}
$$

We have now assembled all the explicit formulas which we require in our trapping problem. If we wish to calculate the probability that a random walker starting at the origin will be trapped at lattice site $R_{j}=j b$, one of the trapping sites $\{i b\}, i=1, \ldots, m$, we can simply calculate it from the conditioned first-passage probability-generating function [Eqs. (1) and (8)]

$$
\begin{equation*}
\Pi(j b ; 0, \ldots, 0 ; z)=D^{(j)}(0, \ldots, 0 ; z) / D(0, \ldots, 0 ; z) \tag{9}
\end{equation*}
$$

The coefficient of z^{N} in the expansion of $\Pi(j b ; 0, \ldots, 0 ; z)$ in powers of z, $F(j b ; 0, \ldots, 0 ; N)$, is the probability of first passage to lattice site $j b$ at step N conditioned on the walker never having visited any of the other trapping sites prior to step N (i.e., $s_{i}=0$ for all i)

$$
\begin{equation*}
\Pi(j b ; 0, \ldots, 0 ; z)=\sum_{N=0}^{\infty} F(j b ; 0, \ldots, 0 ; N) z^{N} \tag{10}
\end{equation*}
$$

The probability $\Pi^{(j)}$ that the random walker will be trapped eventually at $R_{j}=j b$ is, according to Eqs. (9) and (11),

$$
\begin{align*}
\Pi^{(j)} & =\Pi(j b ; 0, \ldots, 0 ; 1) \\
& =\sum_{N=0}^{\infty} F(j b ; 0, \ldots, 0 ; N) \\
& =\lim _{z \rightarrow 1}\left\{D^{(j)}(0, \ldots, 0 ; z) / D(0, \ldots, 0 ; z)\right\} \tag{11}
\end{align*}
$$

The determinant $D(0, \ldots, 0 ; z)$ which appears in Eqs. (9) and (11) has a simpler form than that in Eq. (2), namely
$D(0, \ldots, 0 ; z)=\left|\begin{array}{cccc}P[0 ; z] & P[b ; z] & \cdots & P[(m-1) b ; z] \\ P[b ; z] & P[0 ; z] & \cdots & P[(m-2) b ; z] \\ \vdots & \vdots & & \vdots \\ P[(m-1) b ; z] & P[(m-2) b ; z] & \cdots & P[0 ; z]\end{array}\right|$
The determinant $D(0, \ldots, 0 ; z)$ is symmetric for symmetric random walks because $P\left[R_{j}-R_{i} ; z\right]$ is an even function of its first argument. All elements of the determinants $D(0, \ldots, 0 ; z)$ and $D^{(j)}(0, \ldots, 0 ; z)$ are singular, containing a factor $(1-z)^{-1 / 2}$, so care must be taken in evaluating the limit $z \rightarrow 1$ in Eq. (11). The details of this calculation are given in the Appendix; we merely list the results here. The probarbility $\Pi^{(j)}$ in Eq. (11) that the random walker will be trapped eventually at $R=j b$ is [Appendix, Eq. (A30)]

$$
\begin{equation*}
\Pi^{(j)}=[\sinh (m-j+1) \Gamma-\sinh (m-j) \Gamma] / \sinh m \Gamma \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\sinh (\Gamma / 2)=b^{1 / 2} \sinh (a / 2) \tag{14}
\end{equation*}
$$

It follows from the form of $\Pi^{(j)}$ in Eq. (13) that Π, the probability that the random walker will be trapped eventually at one of the m trapping sites, is a certainty, i.e.,

$$
\begin{equation*}
\Pi=\sum_{j=1}^{m} \Pi^{(j)}=1 \tag{15}
\end{equation*}
$$

We next consider the form of $\Pi^{(j)}$ in two limiting cases: (a) first the limit in which the average step length is large compared to the spacing between traps; and (b) the opposite limit of a small average step length. The average magnitude of the step length of the exponential step distribution, Eq. (4), is

$$
\begin{equation*}
\langle l\rangle=\left(1-e^{-a}\right)^{-1} \tag{16}
\end{equation*}
$$

The limit $\langle l\rangle \gg b$ corresponds to $a \ll 1$, in which case

$$
\begin{equation*}
\langle l\rangle \cong a^{-1} \tag{17}
\end{equation*}
$$

and from Eq. (14)

$$
\begin{equation*}
\Gamma \cong b^{1 / 2} a \tag{18}
\end{equation*}
$$

Thus in case (a), Eq. (13) for $\Pi^{(j)}$ yields

$$
\begin{equation*}
\lim _{a \rightarrow 0}\left\{\Pi^{(j)}\right\}=m^{-1} \tag{19}
\end{equation*}
$$

the same value for all trapping sites.
$\mathrm{LS}^{(2)}$ have note that in the opposite limit [our case (b)], where $a \rightarrow \infty$, the exponential-step-distribution random walk, Eq. (4), behaves like a nearest-neighbor random walk. According to Eq. (14), in the limit of large a,

$$
\begin{equation*}
\Gamma / a=1, \quad a \rightarrow \infty \tag{20}
\end{equation*}
$$

In the limit where $\Gamma \gg 1$, it is convenient to rewrite Eq. (13) as

$$
\begin{equation*}
\Pi^{(j)}=e^{-(j-1) \Gamma}\left(\frac{1-e^{-\Gamma}-e^{-2(m-j+1) \Gamma}+e^{-[2(m-j)+1] \Gamma}}{1-e^{-2 m \Gamma}}\right) \tag{21}
\end{equation*}
$$

Thus, for $\Gamma \geqslant 1$,

$$
\begin{aligned}
& \Pi^{(1)} \cong 1-e^{-\Gamma} \\
& \Pi^{(m)} \cong e^{(m-1) \Gamma}
\end{aligned}
$$

and

$$
\lim _{r \rightarrow \infty}\left\{\Pi^{(j)}\right\}= \begin{cases}1, & j=1 \\ 0, & j>1\end{cases}
$$

Thus in the limiting case (b), it is seen that the probability of trapping at site $j=1$, closest to the starting point, is a certainty, the result expected for a nearest-neighbor one-dimensional random walk.

Finally, we make two remarks suggesting interesting generalizations of the model treated in this paper. First, it is possible to repeat the calculation of trapping probabilities for a biased exponential step distribution since $L S^{(2)}$ have obtained the generating function in this case. Second, it would be of interest to consider the trapping problem for Weierstrass random walks.

APPENDIX. EVALUATION OF $\lim _{z \rightarrow 1}\left\{D^{(j)}(0, \ldots, 0 ; z) / D(0, \ldots, 0 ; z)\right\}$

Each of the elements in the determinants $D(0, \ldots, 0 ; z)$ and $D^{(j)}(0, \ldots, 0 ; z)$, Eqs. (2), (3), and (12), is expressed in terms of the generating function for the exponential-step random walk, Eq. (5). In this calculation it is convenient to isolate the singular part of the generating function which is located at $z=1$:

$$
P\left[R_{j}-R_{i} ; z\right]= \begin{cases}\alpha g(1-z)^{-1 / 2} X^{b|j-i|}, & |j-i| \geqslant 1 \tag{A1}\\ \alpha\left[1+g(1-z)^{-1 / 2}\right], & j=i\end{cases}
$$

where

$$
\begin{align*}
& \alpha=2\left[2+z\left(e^{a}-1\right)\right]^{-1} \tag{A2}\\
& g=z\left(e^{2 a}-1\right) /(2 h) \tag{A3}\\
& h=\left\{\left(e^{a}-1\right)\left[e^{a}+1+z\left(e^{a}-1\right)\right]\right\}^{1 / 2} \tag{A4}
\end{align*}
$$

and

$$
\begin{equation*}
X=\frac{e^{2 a}+1+z\left(e^{a}-1\right)-\left(e^{a}-1\right)(1-z)^{-1 / 2} h}{e^{a}\left[2+z\left(e^{a}-1\right)\right]} \tag{A5}
\end{equation*}
$$

The diagonal and off-diagonal elements of $P\left[R_{j}-R_{i} ; z\right]$ in Eq. (A1) can be represented by the single expression

$$
\begin{equation*}
P\left[R_{j}-R_{i} ; z\right]=\alpha\left[\delta_{i j}+g(1-z)^{1 / 2} X^{b \mid j-i}\right] \tag{A6}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta:

$$
\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Each element of the $m \times m$ determinant $D(0, \ldots, 0 ; z)$ contains a factor α. Therefore $D(0, \ldots, 0 ; z)$ can be written as

$$
\begin{equation*}
D(0, \ldots, 0 ; z)=\alpha^{m} d_{m} \tag{A7}
\end{equation*}
$$

where the i, j element of the $m \times m$ determinant d_{m} is

$$
\begin{equation*}
\delta_{i j}+g(1-z)^{-1 / 2} X^{b|j-i|} \tag{A8}
\end{equation*}
$$

We next show that the determinant $D^{(j)}(0, \ldots, 0 ; z)$ can be expressed as a simple combination of a pair of determants d_{m-j+1} and d_{m-j}. Each element of $D^{(j)}(0, \ldots, 0 ; z)$ is proportional to α, so

$$
\begin{equation*}
D^{(j)}(0, \ldots, 0 ; z)=\alpha^{m} d_{m}^{(j)} \tag{A9}
\end{equation*}
$$

where $d_{m}^{(j)}$ is the $m \times m$ determinant which is obtained from d_{m}, Eqs. (A7) and (A8), by replacing its j th column by

$$
\left(\begin{array}{c}
g(1-z)^{-1 / 2} X^{b} \tag{A10}\\
g(1-z)^{-1 / 2} X^{2 b} \\
\vdots \\
g(1-z)^{-1 / 2} X^{m b}
\end{array}\right)
$$

First note that when a factor X^{b} is removed from column j, its elements are identical with those of column 1 [see Eq. (A8)], except for the first element of column 1 , which contains a contribution from δ_{11}. Thus, by subtracting column j from column 1 and expanding by elements of the first column, one obtains

$$
\begin{equation*}
d_{m}^{(j)}=X^{b} d_{m-1}^{(j-1)} \tag{A11}
\end{equation*}
$$

This procedure can be repeated until

$$
\begin{equation*}
d_{m}^{(j)}=X^{(j-1) b} d_{m-j+1}^{(1)} \tag{A12}
\end{equation*}
$$

Next note that after removing one additional factor X^{b} from the first column of $d_{m-j+1}^{(1)}$ the 1,1 element of Eq. (A12) can be written as

$$
1+g(1-z)^{-1 / 2} X^{b}-1
$$

It therefore follows that

$$
\begin{equation*}
d_{m-j+1}^{(1)}=X^{b}\left[d_{m-j+1}-d_{m-j}\right] \tag{A13}
\end{equation*}
$$

Finally, we have

$$
\begin{equation*}
D^{(j)}(0, \ldots, 0 ; z)=\alpha^{m} X^{j b}\left[d_{m-j+1}-d_{m-j}\right] \tag{A14}
\end{equation*}
$$

The conditioned first-passage probability generating function, Eq. (9), is reduced with the aid of Eqs. (A7) and (A14) to

$$
\begin{equation*}
\Pi(j b ; 0, \ldots, 0 ; z)=X^{j b}\left(d_{m-j+1}-d_{m-j}\right) / d_{m} \tag{A15}
\end{equation*}
$$

We next obtain an explicit expression for the determinant d_{m}. Consider the following pair of operations: (1) multiply the r th row by X^{b} and subtract it from the $r+1$ th row; (2) then repeat this operation for the r th and $(r+1)$ th columns. If this pair of operations is performed in the order $r=m-1, m-2, \ldots, 1$, the determinant d_{m} assumes the tridiagonal form

$$
d_{m}=\left|\begin{array}{cccccc}
1+g(1-z)^{-1 / 2} & -X^{b} & & & & \tag{A16}\\
-X^{b} & \Omega & -X^{b} & & & \\
& -X^{b} & \Omega & & & \\
& & & \ddots & & \\
& & & & \Omega & -X^{b} \\
& & & & -X^{b} & \Omega
\end{array}\right|
$$

where

$$
\begin{equation*}
\Omega=1+g(1-z)^{-1 / 2}+\left[1-g(1-z)^{-1 / 2}\right] X^{2 b} \tag{A17}
\end{equation*}
$$

It follows from Eq. (A16) that d_{m} satisfies the recurrence, or difference equation,

$$
\begin{equation*}
d_{m}=\Omega d_{m-1}-X^{2 b} d_{m-2} \tag{A18}
\end{equation*}
$$

where

$$
d_{0}=1
$$

and

$$
d_{1}=1+g(1-z)^{-1 / 2}
$$

The recurrence equation can be solved by the method of generating functions. Multiply Eq. (A17) by t_{m} and sum from $m=2$ to ∞ and obtain

$$
\begin{equation*}
G(t)-1-t\left[1-g(1-z)^{-1 / 2}\right]=\Omega t[G(t)-1]-X^{2 b} t^{2} G(t) \tag{A19}
\end{equation*}
$$

where

$$
\begin{equation*}
G(t)=\sum_{m=0}^{\infty} d_{m} t^{m} \tag{A20}
\end{equation*}
$$

Solving Eq. (A19) for $G(t)$,

$$
\begin{equation*}
G(t)=\frac{1+t\left[1+g(1-z)^{-1 / 2}-\Omega\right]}{1-2\left(\frac{1}{2} \Omega X^{-b}\right)\left(X^{b} t\right)+\left(X^{b} t\right)^{2}} \tag{A21}
\end{equation*}
$$

The denominator of Eq. (A21) has been cast in the form of the generating function for Tchebychef polynomials, ${ }^{(3)}$ so that

$$
\begin{equation*}
G(t)=\left\{1+t\left[1+g(1-z)^{-1 / 2}-\Omega\right]\right\} \sum_{m=0}^{\infty} U_{m}(\cos \theta)\left(X^{b} t\right)^{2} \tag{A22}
\end{equation*}
$$

where

$$
\begin{align*}
\cos \theta & =\frac{1}{2} \Omega X^{-b} \\
& =\frac{1}{2}\left(X^{b}+X^{-b}\right)-\frac{1}{2} g(1-z)^{-1 / 2}\left(X^{b}-X^{-b}\right) \tag{A23}
\end{align*}
$$

and

$$
\begin{equation*}
U_{m}(\cos \theta)=\sin (m+1) \theta / \sin m \theta \tag{A24}
\end{equation*}
$$

Combining Eqs. (A20) and (A22) and the definition of Ω, Eq. (A17), we find that the explicit formula for d_{m} is the coefficient of t^{m} :

$$
\begin{equation*}
d_{m}=X^{m b}\left\{U_{m}(\cos \theta)+\left[g(1-z)^{-1 / 2}-1\right] X^{b} U_{m-1}(\cos \theta)\right\} \tag{A25}
\end{equation*}
$$

We are now prepared to consider the limit $z \rightarrow 1$ in Eq. (A15) using Eq. (A25). First note that $\cos \theta$, which appears in Eq. (A25) and is defined in Eq. (A23), approaches a well-defined limit as $z \rightarrow 1$, namely

$$
\begin{equation*}
\lim _{z \rightarrow 1}\{\cos \theta\}=1+2 b \sinh ^{2}(a / 2) \tag{A26}
\end{equation*}
$$

Since the limiting value of $\cos \theta$ in Eq. (A26) is greater than one, the limiting value of θ is $i \Gamma$, where Γ is real and

$$
\begin{equation*}
\cosh \Gamma=1+2 b \sinh ^{2}(a / 2) \tag{A27}
\end{equation*}
$$

As a consequence of this fact, a Tchebychef polynomial such as $U_{m}(\cos \theta)$ approaches the limit

$$
\begin{equation*}
\lim _{z \rightarrow 1}\left\{U_{m}(\cos \theta)\right\}=\sinh (m+1) \Gamma / \sinh \Gamma \tag{A28}
\end{equation*}
$$

In obtaining the limit for $\cos \theta$ in Eq. (A26), we have used the fact that X also approaches a limit,

$$
\begin{equation*}
\lim _{z \rightarrow 1}\{X\}=1 \tag{A29}
\end{equation*}
$$

We thus conclude that the only singular component of d_{m} in the limit $z \rightarrow 1$ is the factor $(1-z)^{-1 / 2}$. Thus, the $z \rightarrow 1$ limit of $\Pi(j b ; 0, \ldots, 0 ; z)$ in Eq. (A15) is

$$
\begin{align*}
\Pi^{(j)} & =\lim _{z \rightarrow 1}\{\Pi(j b ; 0, \ldots, 0 ; z)\} \\
& =\left[U_{m-j}(\cosh \Gamma)-U_{m-j-1}(\cosh \Gamma)\right] / U_{m-1}(\cosh \Gamma) \\
& =[\sinh (m-j+1) \Gamma-\sinh (m-j) \Gamma] / \sinh m \Gamma \tag{A30}
\end{align*}
$$

It follows from the form of Eq. (A30) that the probability that the random walker will be trapped at one of the trapping sites is

$$
\begin{equation*}
\sum_{j=1}^{m} \Pi^{(j)}=1 \tag{A31}
\end{equation*}
$$

REFERENCES

1. R. J. Rubin and G. H. Weiss, J. Math. Phys. 23:250 (1982).
2. K. Lakatos-Lindenberg and K. E. Shuler, J. Math. Phys. 12:633 (1971).
3. A. Erdelyi, ed., Higher Transcendental Functions, Vol. 2 (McGraw-Hill, New York, 1953), p. 186.

[^0]: ${ }^{1}$ Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

